EXERCISES [MAI 5.8]
 MONOTONY - CONCAVITY - OPTIMIZATION
 SOLUTIONS

 Compiled by: Christos Nikolaidis

 Compiled by: Christos Nikolaidis}

A. Paper 1 questions (SHORT)

1. (i) $f^{\prime}(x)=5 x^{4}+e^{x}>0, f$ increasing
(ii) $f^{\prime}(x)=3 x^{2}+\frac{1}{x}>0, f$ increasing
(iii) $f^{\prime}(x)=-6 e^{2 x}<0, f$ decreasing (iv) $f^{\prime}(x)=\frac{2 e^{x}}{\left(e^{x}+1\right)^{2}}>0, f$ increasing
2. (a) $f^{\prime}(x)=x^{2}+4 x-5$
(b) $f^{\prime}(x)=0 \Leftrightarrow x=-5, x=1$
so $x=-5$
(c) $f^{\prime \prime}(x)=2 x+4$
$2 x+4=0$
$x=-2$
(d) $x=-5$
3. $x=1$ and $x=3$ are points of inflection $(x=4$ is not)
4. (a) $f^{\prime \prime}(x)=0$ OR the \max and \min of f^{\prime} gives the points of inflexion on f
$-0.114,0.364$
(b) graph of g is a quadratic function, so it does not have any points of inflexion OR graph of g is concave down over entire domain therefore no change in concavity OR $g^{\prime \prime}(x)=-144$, therefore no points of inflexion as $g^{\prime \prime}(x) \neq 0$
5. (a)

Interval	g^{\prime}	$g^{\prime \prime}$
$a<x<b$	positive	positive
$e<x<f$	negative	negative

(b)

Conditions	Point
$g^{\prime}(x)=0, g^{\prime \prime}(x)<0$	C
$g^{\prime}(x)<0, g^{\prime \prime}(x)=0$	D

(c) $\quad g^{\prime}(e)=0 \quad g^{\prime \prime}(e)=0$
(d) 3 points of inflection (one of them, E , is a stationary point of inflection)
6. (a)
(i) $x=-\frac{5}{2}$
(ii) $y=\frac{3}{2}$
(b) By quotient rule: $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{(2 x+5)(3)-(3 x-2)(2)}{(2 x+5)^{2}}=\frac{19}{(2 x+5)^{2}}$
(c) There are no stationary points, since $\frac{\mathrm{d} y}{\mathrm{~d} x} \neq 0$ (or by the graph) (A1)
(d) There are no points of inflexion.
7. (a) $f^{\prime \prime}(x)=3(x-3)^{2}$
(b) $f^{\prime}(3)=0, f^{\prime \prime}(3)=0$
(c) $f^{\prime \prime}$ does not change sign at P
8. (a) $f^{\prime}(x)=2 x \mathrm{e}^{-x}-x^{2} \mathrm{e}^{-x}=(2-x) x \mathrm{e}^{-x}$
(b) Maximum occurs at $x=2$

Exact maximum value $=4 \mathrm{e}^{-2}$
(c) $f^{\prime \prime}(x)=2 \mathrm{e}^{-\mathrm{x}}+2 x \mathrm{e}^{-\mathrm{x}}-2 x \mathrm{e}^{-x}+x^{2} \mathrm{e}^{-x}=\left(x^{2}-4 x+2\right) e^{-x}$

For inflexion, $f^{\prime \prime}(x)=0$

$$
x=\frac{4+\sqrt{8}}{2}(=2+\sqrt{2})
$$

9. (a) $g^{\prime}(x)=\frac{x^{2}\left(\frac{1}{x}\right)-2 x \ln x}{x^{4}}=\frac{x-2 x \ln x}{x^{4}}=\frac{x(1-2 \ln x)}{x^{4}}=: \frac{1-2 \ln x}{x^{3}}$
(b) $g^{\prime}(x)=0 \Leftrightarrow 1-2 \ln x=0 \Leftrightarrow \ln x=\frac{1}{2} \Leftrightarrow x=\mathrm{e}^{\frac{1}{2}}$
10. (a) x-intercepts at $-3,0,2$
(b) $-3<x<0,2<x<3$
(c) the graph of f is concave-down therefore the second derivative is negative
11. (a) $x=1$
(b) Using quotient rule $h^{\prime}(x)=\frac{(x-1)^{2}(1)-(x-2)[2(x-1)]}{(x-1)^{4}}=\frac{(x-1)-(2 x-4)}{(x-1)^{3}}=\frac{3-x}{(x-1)^{3}}$
(c) at point of inflexion $g^{\prime \prime}(x)=0$

$$
x=4
$$

$$
y=\frac{2}{9}=0.222 i e \mathrm{P}\left(4, \frac{2}{9}\right)
$$

GRAPH OF f^{\prime}

12.

13.

Graph	$f^{\prime}(x)$	$f^{\prime \prime}(x)$
Diagram	I	IV

14. (a)

Note: negative gradient, x - intercept of q. (It need not be linear)
(b)

	Maximum point on f	Inflexion point on f
x-coordinate	r	q

(c) METHOD 1

Second derivative is zero, second derivative changes sign.
METHOD 2
There is a maximum on the graph of the first derivative.
15. (a) $x=4 \quad g^{\prime \prime}$ changes sign at $x=4$ or concavity changes
(b) $x=2$

EITHER g^{\prime} goes from negative to positive
OR $g^{\prime}(2)=0$ and $g^{\prime \prime}(2)$ is positive
(c)

Note: a cubic curve through (4,0), M at $x=2, P$ at $(4,0)$.

OPTIMIZATION

16. Let x be one side of the rectangle.

The other side will be $y=\frac{4 a-2 x}{2}=2 a-x$
Then the area is given by $A=x(2 a-x)=2 a x-x^{2}$
$\frac{d A}{d x}=2 a-2 x=0 \Leftrightarrow x=a$
$\frac{d^{2} A}{d x^{2}}=-2<0$ so $x=a$ gives a maximum.
It is a square of side $x=a$ and the maximum area is $A=a^{2}$
17. Let x be one side of the rectangle.

The other side will be $y=\frac{a^{2}}{x}$.
Then the perimeter is given by $P=2 x+\frac{2 a^{2}}{x}$

$$
\begin{aligned}
& \frac{d P}{d x}=2-\frac{2 a^{2}}{x^{2}}=0 \Leftrightarrow x^{2}=a^{2} \Leftrightarrow x=a \\
& \frac{d^{2} P}{d x^{2}}=\frac{400}{x^{3}}>0 \text { for } x=a, \text { so it gives a minimum. }
\end{aligned}
$$

It is a square of side $x=a$ and the minimum perimeter is $P=4 a$
18. (a) $6 x^{2}+6 y^{2}=300 \Leftrightarrow x^{2}+y^{2}=50 \Leftrightarrow y=\sqrt{50-x^{2}}$
(b) $\quad V=x^{3}+\left(50-x^{2}\right)^{\frac{3}{2}}$.

$$
\begin{aligned}
& \frac{d V}{d x}=3 x^{2}-\frac{3}{2}\left(50-x^{2}\right)^{1 / 2} 2 x=3 x^{2}-3 x \sqrt{50-x^{2}} \\
& \frac{d V}{d x}=0 \Leftrightarrow 3 x^{2}-3 x \sqrt{50-x^{2}}=0 \Leftrightarrow x=\sqrt{50-x^{2}} \Leftrightarrow x^{2}=50-x^{2} \Leftrightarrow x=5
\end{aligned}
$$

Then $y=5$. We have two similar cubes of total volume $V=5^{3}+5^{3}=250$.
Notice: By using GDC, graph mode, the minimum of the function $V=x^{3}+\left(50-x^{2}\right)^{\frac{3}{2}}$ is $(5,250)$
So the minimum value is 250
19. METHOD 1
(a) Let $D=\sqrt{(a-2)^{2}+\left(a^{2}-\frac{1}{2}\right)^{2}}$
(b) $\frac{d D}{d a}=\frac{1}{2 \sqrt{---}}\left[2(a-2)+2\left(a^{2}-\frac{1}{2}\right) 2 a\right]=\frac{1}{2 \sqrt{---}}\left[2 a-4+4 x^{3}-2 a\right]=\frac{1}{2 \sqrt{---}}\left[4 a^{3}-4\right]$

$$
=\frac{2}{\sqrt{---}}\left[a^{3}-1\right]
$$

(c) $\frac{d D}{d a}=0 \Leftrightarrow a^{3}-1=0 \Leftrightarrow a=1$
(i) The point is $\left(1,1^{2}\right)$ i.e. $(1,1)$
(ii) The minimum distance is $D=\frac{\sqrt{5}}{2}(\cong 1.12)$

Notice :

we can also use the GDC graph for the function $D=\sqrt{(x-2)^{2}+\left(x^{2}-\frac{1}{2}\right)^{2}}$
It has a minimum at $(1,1.12)$
Hence (i) The point is $\left(1,1^{2}\right)$ i.e. $(1,1)$
(ii) The minimum distance is $D=1.12$
20. (a) $x^{2} y=125 \Leftrightarrow y=\frac{125}{x^{2}}$
(b) $S=2 x^{2}+4 x y=2 x^{2}+4 x \frac{125}{x^{2}}=2 x^{2}+\frac{500}{x}$
(c) $\frac{d S}{d x}=4 x-\frac{500}{x^{2}}$
$4 x-\frac{500}{x^{2}}=0 \Leftrightarrow 4 x=\frac{500}{x^{2}} \Leftrightarrow x^{3}=125 \Leftrightarrow x=5$
$\frac{d^{2} S}{d x^{2}}=4+\frac{1000}{x^{3}}$
For $x=5, \frac{d^{2} S}{d x^{2}}<0$ hence max

$$
S_{\max }=150
$$

B. Paper 2 questions (LONG)

21. (a) $f^{\prime}(x)=3 a x^{2}+2 b x+c$
$f^{\prime \prime}(x)=6 a x+2 b$
(b) $f(1)=4 \Rightarrow a+b+c=4$
$f^{\prime}(1)=0 \Rightarrow 3 a+2 b+c=0$
$f^{\prime \prime}(2)=0 \Rightarrow 12 a+2 b=0$
(c) $\quad a=1, b=-6, c=9$
(d) $f^{\prime}(x)=3 x^{2}-12 x+9$, stationary points: $x=1, x=3$ minimum at $x=3$ since $f^{\prime \prime}(x)=6 x-12$ and $f^{\prime \prime}(3)=6>0$
22. (a)
(i) $f^{\prime}(x)=\frac{\left(x \times \frac{1}{2 x} \times 2\right)-(\ln 2 x \times 1)}{x^{2}}=\frac{1-\ln 2 x}{x^{2}}$
(ii) $f^{\prime}(x)=0 \Leftrightarrow \frac{1-\ln 2 x}{x^{2}}=0$ only at 1 point, when $x=\frac{\mathrm{e}}{2}$
(iii) Maximum point when $f^{\prime}(x)=0$.

$$
\begin{aligned}
& f^{\prime}(x)=0 \text { for } x=\frac{\mathrm{e}}{2}(=1.36) \\
& y=f\left(\frac{\mathrm{e}}{2}\right)=\frac{2}{\mathrm{e}}(=0.736)
\end{aligned}
$$

(b) $f^{\prime \prime}(x)=\frac{-\frac{1}{2 x} \times 2 \times x^{2}-(1-\ln 2 x) 2 x}{x^{4}}=\frac{2 \ln 2 x-3}{x^{3}}$

Inflexion point $\Rightarrow f^{\prime \prime}(x)=0 \Rightarrow 2 \ln 2 x=3 \Rightarrow x=\frac{\mathrm{e}^{1.5}}{2}(=2.24)$
23. (a) B, D
(b) (i) $f^{\prime}(x)=-2 x \mathrm{e}^{-x^{2}}$
(ii) product rule

$$
f^{\prime \prime}(x)=-2 \mathrm{e}^{-x^{2}}-2 x \times-2 x \mathrm{e}^{-x^{2}}=-2 \mathrm{e}^{-x^{2}}+4 x^{2} \mathrm{e}^{-x^{2}}=\left(4 x^{2}-2\right) \mathrm{e}^{-x^{2}}
$$

(c) $\quad f^{\prime \prime}(x)=0 \Leftrightarrow\left(4 x^{2}-2\right)=0$
$p=0.707\left(=\frac{1}{\sqrt{2}}\right), q=-0.707\left(=-\frac{1}{\sqrt{2}}\right)$
(d) checking sign of $f^{\prime \prime}$ on either side of POI
sign change of $f^{\prime \prime}(x)$
24. (a) (i) Vertical asymptote $x=-1$ (ii) Horizontal asymptote $y=0$
(iii)

(b) (i) $\quad f^{\prime}(x)=\frac{-6 x^{2}}{\left(1+x^{3}\right)^{2}}$

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{\left(1+x^{3}\right)^{2}(-12 x)+6 x^{2}(2)\left(1+x^{3}\right)^{1}\left(3 x^{2}\right)}{\left(1+x^{3}\right)^{4}} \\
& =\frac{\left(1+x^{3}\right)(-12 x)+36 x^{4}}{\left(1+x^{3}\right)^{3}}=\frac{-12-12 x^{4}+36 x^{4}}{\left(1+x^{3}\right)^{3}}=\frac{12 x\left(2 x^{3}-1\right)}{\left(1+x^{3}\right)^{3}}
\end{aligned}
$$

(ii) Point of inflexion $=>f^{\prime \prime}(x)=0 \Rightarrow x=0$ or $x=\sqrt[3]{\frac{1}{2}}$

$$
x=0 \text { or } x=0.794(3 \mathrm{sf})
$$

25. (a)

(b) (i) $\quad f^{\prime}(x)=2 \mathrm{e}^{-x}+(2 x+1)\left(-\mathrm{e}^{-x}\right)=(1-2 x) \mathrm{e}^{-x}$
(ii) $\operatorname{At} \mathbf{Q}, f^{\prime}(x)=0$

$$
x=0.5, y=2 \mathrm{e}^{-0.5} \quad \mathbf{Q} \text { is }\left(0.5,2 \mathrm{e}^{-0.5}\right)
$$

(c) $1 \leq k<2 \mathrm{e}^{-0.5}$
(d) $f^{\prime \prime}(x)=0 \Leftrightarrow \mathrm{e}^{-x}(-3+2 x)=0$

This equation has only one root. So f has only one point of inflexion.
26. (a) $x=1$
(b) (i) $\quad f(-1000)=2.01 \quad$ (ii) $y=2$
(c) $f^{\prime}(x)=\frac{(x-1)^{2}(4 x-13)-2(x-1)\left(2 x^{2}-13 x+20\right)}{(x-1)^{4}}$

$$
=\frac{\left(4 x^{2}-17 x+13\right)-\left(4 x^{2}-26 x+40\right)}{(x-1)^{3}}=\frac{9 x-27}{(x-1)^{3}}
$$

(d) $\quad f^{\prime}(3)=0 \quad \Rightarrow$ stationary point
$f^{\prime \prime}(3)=\frac{18}{16}>0 \Rightarrow$ minimum
(e) Point of inflexion $\Rightarrow f^{\prime \prime}(x)=0 \Rightarrow x=4$
$x=4 \Rightarrow y=0 \quad \Rightarrow$ Point of inflexion $=(4,0)$
27. (a) (i) $-1.15,1.15$
(ii) it occurs at P and Q (when $x=-1.15, x=1.15$)
$k=-1.13, k=1.13$
(b) $g^{\prime}(x)=x^{3} \times \frac{-2 x}{4-x^{2}}+\ln \left(4-x^{2}\right) \times 3 x^{2}=\frac{-2 x^{4}}{4-x^{2}}+3 x^{2} \ln \left(4-x^{2}\right)$
(c)

$w=2.69, w<0$
28. (a) (i) coordinates of A are $(0,-2)$
(ii) $f(x)=3+20 \times\left(x^{2}-4\right)^{-1}$
$f^{\prime}(x)=20 \times(-1) \times\left(x^{2}-4\right)^{-2} \times(2 x)=-40 x\left(x^{2}-4\right)^{-2}$
OR $\frac{\left(x^{2}-4\right)(0)-(20)(2 x)}{\left(x^{2}-4\right)^{2}}$
substituting $x=0$ into $f^{\prime}(x)$ gives $f^{\prime}(x)=0$
(b) (i) $\quad f^{\prime}(0)=0$ (stationary)
$f^{\prime \prime}(0)=\frac{40 \times 4}{(-4)^{3}}\left(=\frac{-5}{2}\right)$ negative
then the graph must have a local maximum
(ii) $f^{\prime \prime}(x)=0$ at point of inflexion,
but the second derivative is never 0 (the numerator is always positive)
(c) getting closer to the line $y=3$, horizontal asymptote at $y=3$
(d) $y \leq-2, y>3$
29. (a) $f^{\prime}(x)=\mathrm{e}^{x}\left(1-x^{2}\right)+\mathrm{e}^{x}(-2 x)=\mathrm{e}^{x}\left(1-2 x-x^{2}\right)$
(b) $y=0$
(c) at the local maximum or minimum point
$f^{\prime}(x)=0 \Leftrightarrow \mathrm{e}^{x}\left(1-2 x-x^{2}\right)=0 \Rightarrow 1-2 x-x^{2}=0$
$r=-2.41 s=0.414$ (OR directly by GDC graph)
(d) $f^{\prime}(0)=1 \Rightarrow$ gradient of the normal $=-1$
$y-1=-1(x-0) \Leftrightarrow x+y=1$
(e) (i) intersection points at $(0,1)$ and $(1,0)$
30. (a) $f^{\prime}(x)=x^{2}-2 x-3$
$x^{2}-2 x-3=0 \Leftrightarrow x=\frac{2 \pm \sqrt{16}}{2} \Leftrightarrow x=-1$ or $x=3$
$x=-1($ ignore $x=3) \quad y=-\frac{1}{3}-1+3=\frac{5}{3}$
coordinates are $\left(-1, \frac{5}{3}\right)$
(b) (i) $(-3,-9)$
(ii) $(1,-4)$
(iii) reflection gives $(3,9) \quad$ stretch gives $\left(\frac{3}{2}, 9\right)$
31. (a) quotient rule
$f^{\prime}(x)=\frac{\sin x(-\sin x)-\cos x(\cos x)}{\sin ^{2} x}=\frac{-\left(\sin ^{2} x+\cos ^{2} x\right)}{\sin ^{2} x}=\frac{-1}{\sin ^{2} x}$
(b) $\quad f^{\prime}(x)=-(\sin x)^{-2}$
$f^{\prime \prime}(x)=2(\sin x)^{-3}(\cos x)\left(=\frac{2 \cos x}{\sin ^{3} x}\right)$
(c) substituting $\frac{\pi}{2} \Rightarrow p=-1, q=0$
(d) second derivative is zero, second derivative changes sign
32. (a) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{e}^{x}(\cos x+\sin x)+\mathrm{e}^{x}(-\sin x+\cos x)=2 \mathrm{e}^{x} \cos x$
(b) $\frac{\mathrm{d} y}{\mathrm{~d} x}=0 \Rightarrow 2 \mathrm{e}^{x} \cos x=0 \Rightarrow \cos x=0 \Rightarrow x=\frac{\pi}{2} \Rightarrow a=\frac{\pi}{2}$

$$
y=\mathrm{e}^{\frac{\pi}{2}}\left(\cos \frac{\pi}{2}+\sin \frac{\pi}{2}\right)=\mathrm{e}^{\frac{\pi}{2}} \Rightarrow b=\mathrm{e}^{\frac{\pi}{2}}
$$

(c) At D, $\left.\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=0 \Rightarrow 2 \mathrm{e}^{x} \cos x-2 \mathrm{e}^{x} \sin x=0 \Rightarrow 2 \mathrm{e}^{x x} \cos x-\sin x\right)=0$
$\Rightarrow \cos x-\sin x=0 \Rightarrow x=\frac{\pi}{4}$

$$
y=\mathrm{e}^{\frac{\pi}{4}}\left(\cos \frac{\pi}{4}+\sin \frac{\pi}{4}\right)=\sqrt{2} \mathrm{e}^{\frac{\pi}{4}}
$$

33. (a) $y=0$
(b) $\quad f^{\prime}(x)=\frac{-2 x}{\left(1+x^{2}\right)^{2}}$
(c) $f^{\prime}(x)=-2 x\left(1+x^{2}\right)^{-2}$,

$$
f^{\prime \prime}(x)=-2\left(1+x^{2}\right)^{-2}+4 x\left(1+x^{2}\right)^{-3} 2 x=\frac{-2}{\left(1+x^{2}\right)^{2}}+\frac{8 x^{2}}{\left(1+x^{2}\right)^{3}}
$$

$$
=\frac{-2\left(1+x^{2}\right)}{\left(1+x^{2}\right)^{3}}+\frac{8 x^{2}}{\left(1+x^{2}\right)^{3}}=\frac{6 x^{2}-2}{\left(1+x^{2}\right)^{3}}
$$

(d) $f^{\prime \prime}(x)=0 \Leftrightarrow 6 x^{2}-2=0 \Leftrightarrow x= \pm \sqrt{\frac{1}{3}}$

The maximum gradient is at $x=\frac{-1}{\sqrt{3}}$
34. (a)

Note: left branch asymptotic to the x-axis, vertical asymptote at $x=1 / 2$
(b) $\quad x=\frac{1}{2}$ (must be an equation)
(c) $f^{\prime}(x)=2 \mathrm{e}^{2 x-1}-10(2 x-1)^{-2}$
(e) (i) $\quad x=1.11 \quad(\operatorname{accept}(1.11,7.49)) \quad$ (ii) $p=0, q=7.49 \quad(0 \leq k<7.49)$
35. (a) π
(b) (i) $f^{\prime}(x)=\mathrm{e}^{x} \cos x+\mathrm{e}^{x} \sin x=\mathrm{e}^{x}(\cos x+\sin x)$
(ii) At $\mathrm{B}, f^{\prime}(x)=0$
(c) $f^{\prime \prime}(x)=\mathrm{e}^{x} \cos x-\mathrm{e}^{x} \sin x+\mathrm{e}^{x} \sin x+\mathrm{e}^{x} \cos x=2 \mathrm{e}^{x} \cos x$
(d) (i) At A, $f^{\prime \prime}(x)=0$
(ii) $2 \mathrm{e}^{x} \cos x=0 \Leftrightarrow \cos x=0$
$x=\frac{\pi}{2}, y=\mathrm{e}^{\frac{\pi}{2}} \quad$ Coordinates are $\left(\frac{\pi}{2}, \mathrm{e}^{\frac{\pi}{2}}\right)$

